Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## Phase Diagram of PrPb₃ under hydrostatic pressure R. Vollmer¹, G. Goll¹, C. Pfleiderer¹, H. v. Löhneysen¹, M. B. Maple², P. C. Canfield³ - ¹ Physikalisches Institut, Universität Karlsruhe, D-76128 Karlsruhe - ² Inst. for Pure and Appl. Phys. Sciences, UCSD, La Jolla, CA 92093, USA - ³ Ames Lab. and Dep. of Physics, Iowa State Univ., Ames, Iowa 50010, USA The low-temperature properties of Pr-based intermetallics with a non-Kramers doublet ground state are determined by nonmagnetic interactions. The cubic compound PrPb₃ exhibits antiferroquadrupolar (AFQ) order as previously seen by magnetization measurements and neutron scattering. We investigated the (B, T, p) phase diagram of PrPb₃ by measurements of the specific heat and the magnetocaloric effect. In zero magnetic field B the specific heat shows a second-order transition with an AFQ ordering temperature $T_{AFQ} = 0.39 \text{ K}$ in line with earlier results. The entropy for B = 0 reaches $R \ln 2$ near 1 K which is compatible with a doublet ground state. For $B \parallel \langle 100 \rangle$, T_{AFQ} as determined by the maximum in the specific heat increases to $T_{AFQ} = 0.66 \text{ K}$ in 6 T. Antiferromagnetic interactions between the field-induced staggered magnetic moments stabilize the AFQ phase and increase T_{AFQ} in an applied B. In addition to this second-order transition, we found a further transition at $T=0.35~{\rm K}$ for $3~{\rm T}$ and $T=0.49~{\rm K}$ for $4.5~{\rm T}$, which, however, is only observed upon heating. The strong hysteresis between heating and cooling suggests that this transition is of first order. Further support comes from measurements of the magnetocaloric effect $\Delta T/\Delta B$ at fixed $T \approx 500 \text{ mK}$ and $T \approx 230 \text{ mK}$ as a function of B up to 6.5 T. Under hydrostatic pressure of 6.5 kbar the phase diagram is almost unaltered in agreement with an estimate of dT_{AFQ}/dp by Ehrenfest's relation.